Tungsten as interstellar radiation shielding?

09.07.2019

A boiling point of 5900 degrees Celsius and diamond-like hardness in combination with carbon: tungsten is the heaviest metal, yet has biological functions - especially in heat-loving microorganisms. A team led by Tetyana Milojevic from the Faculty of Chemistry at the University of Vienna report for the first time rare microbial-tungsten interactions at the nanometer range. Based on these findings, not only the tungsten biogeochemistry, but also the survivability of microorganisms in outer space conditions can be investigated. The results appeared recently in the journal Frontiers in Microbiology.

Full version of press release

Publication in "Frontiers in Microbiology" 
Milojevic T*, Albu M, Blazevic A, Gumerova N, Konrad L and Cyran N (2019) Nanoscale Tungsten-Microbial Interface of the Metal Immobilizing Thermoacidophilic Archaeon Metallosphaera sedula Cultivated With Tungsten Polyoxometalate. Front. Microbiol. 10:1267. doi: 10.3389/fmicb.2019.01267
https://doi.org/10.3389/fmicb.2019.01267

Blazevic A, Albu M, Mitsche S, Rittmann S, Habler G and Milojevic T* (2019) Biotransformation of scheelite CaWO4 by the extreme thermoacidophile Metallosphaera sedula: tungsten-microbial interface. Front. Microbiol. 10:1492. doi: 10.3389/fmicb.2019.01492 
https://doi.org/10.3389/fmicb.2019.01492

 

Tungsten polyoxometalates as life-sustaining inorganic frameworks. Single cells of M. sedula after cultivation with tungsten-bearing W-POM (© Tetyana Milojevic).